
 How To Write Efficient SQL Queries with Tips N Tricks

© By - Prashant S. Sarode
Email : prashuss@hotmail.com

1. Use the appropriate Oracle Optimizer

The ORACLE optimizer has three primary modes of operation:

� RULE
� COST &
� CHOOSE

To set the optimizer goal, you can specify RULE, COST, CHOOSE, ALL_ROWS

or FIRST_ROWS for the OPTIMIZER_MODE parameter in the init.ora file at
session level. You can override the optimizer’s default operations at both the
query (using Hints) & session level (using ALTER SESSION command).

The Rule-Based Optimizer (RBO) evaluates possible execution paths &

rates the alternative execution paths based on a series of syntactical rules.

To make use of Cost-Based Optimizer (CBO), you need to make sure that

you run the analyze command frequently enough to generate statistics about
the objects in your database to accurately reflect the data.

Setting OPTIMIZER_MODE to CHOOSE invokes CBO, if the tables have been

analyzed and the RBO, if the tables have not been analyzed.

By default, ORACLE uses CHOOSE optimizer mode. To reduce the potential for

unplanned full table scans, you should avoid using the CHOOSE option; either use
the RBO or the CBO throughout your database.

2. Operations That Access Tables

ORACLE performs two operations for accessing the rows of a table:

� TABLE ACCESS FULL

A full table scan sequentially reads each row of a table. To
optimize the performance of a full table scan, ORACLE reads multiple
blocks during each database read.

A full table scan is used whenever there is no where clause on

a query.

� TABLE ACCESS BY ROWID

To improve the performance of table accesses, you can use this
operation that allows you to access rows by their RowID pseduo-

column values. The RowID records the physical location where the row
is stored. ORACLE uses indexes to correlate data values with RowID
values – and thus with physical locations of the data. And because
indexes provide quick access to RowID values, they help to improve
the performance of queries that make use of indexed columns.

3. Share SQL Statements

ORACLE holds SQL statements in memory after it has parsed them, so the

parsing and analysis won’t have to be repeated if the same statement is issued
again. The single shared context area in the shared buffer pool of the System
Global Area (SGA) is shared by all the users. Thus, if you issue a SQL statement,
sometimes known as a cursor, that is identical to a statement another user has
issued, you can take advantage of the fact that ORACLE has already parsed the
statement and figured out the best execution plan for it. This represents major
performance improvements and memory savings. But the cache buffering is
applied only to simple tables, the multiple table queries & the joins are never
cached.

The DBA must set the appropriate INIT.ORA parameters for the context

areas. The larger the area, the more statements can be retained there and the
more likely statements are to be shared.

Whenever you issue a SQL statement, ORACLE first looks in the context area

to see if there is an identical statement there. Unfortunately, ORACLE does an
extra string comparison on the new statement and the contents of the context
area. To be shared, the SQL statements must truly be the same: carriage
returns, spaces, and case (upper vs lower) all affect the comparison.

In order to qualify for this matching condition, all three of the following rules

must be true to make use of the parsed statement in the shared area.

1. There must be a character-by-character match between the statement

 being examined and one already in the shared pool.

Note:
Before this comparison is performed, Oracle applies an internal

algorithm using the new statement. It then checks the results against
values of statements already in the pool. If the new value matches one
already there, then only the string comparison outlined in Rule 1 is
performed.

For e.g.

SELECT * FROM EMP;

is not the same as any of these:

 SELECT * from EMP;
 Select * From Emp;
 SELECT * FROM EMP;

The following statements do not qualify because the first SQL
statement is split over two lines whereas the second is on a single line.

a. Select pin from person where last_name =

‘LAU’;

b. Select pin from person where last_name = ‘LAU’;

2. The objects being referenced in the new statement are exactly the same

as those objects in a statement that has passed the comparison in Rule 1.

For e.g.

Assume that for this example, the users have access to the objects as
shown below:

USER OBJECT NAME ACCESSED VIA

Jack sal_limit private synonym

 work_city public synonym
 plant_detail public synonym

Jill sal_limit private synonym
 work_city public synonym

 plant_detail table owner

Consider the following SQL statements & why they can or cannot be
shared between the two users listed above.

SQL Statement Object Matching WHY

select max(sal_cap) NO Each user has a private synonym
from sal_limit; sal_limit - these are different

objects.

select count(*) YES Both users reference work_city
from work_city by the same public synonym - the
where sdesc same object.

 like 'NEW%';

select a.sdesc, NO User jack references plant_detail
b.location by a public synonym whereas user

from work_city a, Jill is the table owner – these are
plant_detail b different objects.

where a.city_id = b.city_id;

select * NO Each user has a private synonym
from sal_limit sal_limit – these are different
where over_time objects.
 is not null;

3. If bind variables are referenced, they must have the same name in both

the new & existing statements.

For e.g.

The first two statements in the following listing are identical, whereas
the next two statements are not (even if the different bind variables have
the same value at run time).

select pin, name from people where pin = :blk1.pin;
select pin, name from people where pin = :blk1.pin;

select pos_id, sal_cap from sal_limit where over_time = :blk1.ot_ind;
select pos_id, sal_cap from sal_limit where over_time = :blk1.ov_ind;

4. Select the Most Efficient Table Name Sequence (Only for RBO)

ORACLE parser always processes table names from right to left, the table

name you specify last (driving table) is actually the first table processed. If you
specify more than one table in a FROM clause of a SELECT statement, you must
choose the table containing the lowest number of rows as the driving table. When
ORACLE processes multiple tables, it uses an internal sort/merge procedure to
join those tables. First, it scans & sorts the first table (the one specified last in
the FROM clause). Next, it scans the second table (the one prior to the last in the
FROM clause) and merges all of the rows retrieved from the second table with
those retrieved from the first table.

For e.g.

Table TAB1 has 16,384 rows.
Table TAB2 has 1 row.

Select TAB2 as the driving table. (Best Approach)

SELECT COUNT(*) FROM TAB1, TAB2 0.96 seconds elapsed

Now, select TAB1 as the driving table. (Poor Approach)

SELECT COUNT(*) FROM TAB2, TAB1 26.09 seconds elapsed

If three tables are being joined, select the intersection table as the driving
table. The intersection table is the table that has many tables dependent on it.

For e.g.

The EMP table represents the intersection between the LOCATION table
and the CATEGORY table.

SELECT . . .
FROM LOCATION L,
 CATEGORY C,
 EMP E
WHERE E.EMP_NO BETWEEN 1000 AND 2000
AND E.CAT_NO = C.CAT_NO

AND E.LOCN = L.LOCN

 is more efficient than this next example:

SELECT . . .
FROM EMP E,

LOCATION L,
 CATEGORY C
WHERE E.CAT_NO = C.CAT_NO
AND E.LOCN = L.LOCN
AND E.EMP_NO BETWEEN 1000 AND 2000

5. Position of Joins in the WHERE Clause

Table joins should be written first before any condition of WHERE clause. And
the conditions which filter out the maximum records should be placed at the end
after the joins as the parsing is done from BOTTOM to TOP.

For e.g.

 Least Efficient : (Total CPU = 156.3 Sec)

SELECT
FROM EMP E
WHERE SAL > 50000
AND JOB = ‘MANAGER’
AND 25 < (SELECT COUNT(*)

 FROM EMP
 WHERE MGR = E.EMPNO);

 Most Efficient : (Total CPU = 10.6 Sec)

SELECT
FROM EMP E
WHERE 25 < (SELECT COUNT(*)

 FROM EMP
 WHERE MGR = E.EMPNO)

AND SAL > 50000
AND JOB = ‘MANAGER’;

6. Avoid Using * in SELECT Clause

The dynamic SQL column reference (*) gives you a way to refer to all of the
columns of a table. Do not use * feature because it is a very inefficient one as the
* has to be converted to each column in turn. The SQL parser handles all the
field references by obtaining the names of valid columns from the data dictionary
& substitutes them on the command line which is time consuming.

7. Reduce the Number of Trips to the Database

Every time a SQL statement is executed, ORACLE needs to perform many
internal processing steps; the statement needs to be parsed, indexes evaluated,

variables bound, and data blocks read. The more you can reduce the number of
database accesses, the more overhead you can save.

For e.g.

There are 3 distinct ways of retrieving data about employees who have

employee numbers 0342 or 0291.

Method 1 (Least Efficient) :

SELECT EMP_NAME, SALARY, GRADE
FROM EMP
WHERE EMP_NO = 0342;

SELECT EMP_NAME, SALARY, GRADE
FROM EMP
WHERE EMP_NO = 0291;

Method 2 (Next Most Efficient) :

DECLARE
 CURSOR C1(E_NO NUMBER) IS
 SELECT EMP_NAME, SALARY, GRADE

FROM EMP
WHERE EMP_NO = E_NO;

BEGIN
 OPEN C1(342);
 FETCH C1 INTO …, …, …;
 .

.
OPEN C1(291);

 FETCH C1 INTO …, …, …;
 CLOSE C1;
END;

Method 3 (Most Efficient) :

SELECT A.EMP_NAME, A.SALARY, A.GRADE,
 B.EMP_NAME, B.SALARY, B.GRADE,
FROM EMP A,
 EMP B
WHERE A.EMP_NO = 0342
AND B.EMP_NO = 0291;

Note:
 One simple way to increase the number of rows of data you can fetch with
one database access & thus reduce the number of physical calls needed is to
reset the ARRAYSIZE parameter in SQL*Plus, SQL*Forms & Pro*C. Suggested
value is 200.

8. Use DECODE to Reduce Processing

The DECODE statement provides a way to avoid having to scan the same
rows repetitively or to join the same table repetitively.

For e.g.

 SELECT COUNT(*), SUM(SAL)

FROM EMP
WHERE DEPT_NO = 0020
AND ENAME LIKE ‘SMITH%’;

SELECT COUNT(*), SUM(SAL)
FROM EMP
WHERE DEPT_NO = 0030
AND ENAME LIKE ‘SMITH%’;

 You can achieve the same result much more efficiently with DECODE:

 SELECT COUNT(DECODE(DEPT_NO, 0020, ‘X’, NULL)) D0020_COUNT,
 COUNT(DECODE(DEPT_NO, 0030, ‘X’, NULL)) D0030_COUNT,
 SUM(DECODE(DEPT_NO, 0020, SAL, NULL)) D0020_SAL,
 SUM(DECODE(DEPT_NO, 0030, SAL, NULL)) D0030_SAL
 FROM EMP

WHERE ENAME LIKE ‘SMITH%’;

Similarly, DECODE can be used in GROUP BY or ORDER BY clause
effectively.

9. Combine Simple, Unrelated Database Accesses

If you are running a number of simple database queries, you can improve

performance by combining them into a single query, even if they are not related.

For e.g.

SELECT NAME

 FROM EMP
 WHERE EMP_NO = 1234;

SELECT NAME
 FROM DPT
 WHERE DPT_NO = 10;

 SELECT NAME
 FROM CAT
 WHERE CAT_TYPE = 'RD';

 The above three queries can be combined as shown below:

SELECT E.NAME, D.NAME, C.NAME
 FROM CAT C, DPT D, EMP E, DUAL X

WHERE NVL('X', X.DUMMY) = NVL('X', E.ROWID (+))
AND NVL('X', X.DUMMY) = NVL('X', D.ROWID (+))

 AND NVL('X', X.DUMMY) = NVL('X', C.ROWID (+))

 AND E.EMP_NO (+) = 1234
 AND D.DEPT_NO (+) = 10
 AND C.CAT_TYPE (+) = 'RD'

10. Deleting Duplicate Records

The efficient way to delete duplicate records from a table is shown below. It
takes advantage of the fact that a row’s ROWID must be unique.

DELETE FROM EMP E
WHERE E.ROWID > (SELECT MIN(X.ROWID)
 FROM EMP X

WHERE X.EMP_NO = E.EMP_NO);

11. Use TRUNCATE instead of DELETE

When rows are removed from a table, under normal circumstances, the
rollback segments are used to hold undo information; if you do not commit your
transaction, Oracle restores the data to the state it was in before your transaction
started.

With TRUNCATE, no undo information is generated. Once the table is
truncated, the data cannot be recovered back. It is faster & needs fewer
resources.

Use TRUNCATE rather than DELETE for wiping the contents of small or large
tables when you need no undo information generated.

12. Issue Frequent COMMIT statements

Whenever possible, issue frequent COMMIT statements in all your programs.
By issuing frequent COMMIT statements, the performance of the program is
enhanced & its resource requirements are minimized as COMMIT frees up the
following resources:

� Information held in the rollback segments to undo the transaction, if

necessary.

� All locks acquired during statement processing.

� Space in the redo log buffer cache

� Overhead associated with any internal Oracle mechanisms to manage the

resources in the previous three items.

13. Counting Rows from Tables

Contrary to popular belief, COUNT(*) is faster than COUNT(1). If the rows are

being returned via an index, counting the indexed column – for example,
COUNT(EMPNO) is faster still.

14. Use WHERE in Place of HAVING

Avoid including a HAVING clause in SELECT statements. The HAVING clause

filters selected rows only after all rows have been fetched. This could

include sorting, summing, etc. Restricting rows via the WHERE clause, rather
than the HAVING clause, helps reduce these overheads.

For e.g.

 Least Efficient :

 SELECT REGION, AVG(LOC_SIZE)
 FROM LOCATION
 GROUP BY REGION
 HAVING REGION != ‘SYDNEY’
 AND REGION != ‘PERTH’

 Most Efficient :

 SELECT REGION, AVG(LOC_SIZE)
 FROM LOCATION
 GROUP BY REGION
 WHERE REGION != ‘SYDNEY’
 AND REGION != ‘PERTH’

15. Minimize Table Lookups in a Query

To improve performance, minimize the number of table lookups in queries,

particularly if your statements include sub-query SELECTs or multi-column
UPDATEs.

For e.g.

 Least Efficient :

 SELECT TAB_NAME
 FROM TABLES
 WHERE TAB_NAME = (SELECT TAB_NAME
 FROM TAB_COLUMNS
 WHERE VERSION = 604)
 AND DB_VER = (SELECT DB_VER
 FROM TAB_COLUMNS
 WHERE VERSION = 604)

 Most Efficient :

 SELECT TAB_NAME
 FROM TABLES
 WHERE (TAB_NAME, DB_VER) = (SELECT TAB_NAME, DB_VER
 FROM TAB_COLUMNS
 WHERE VERSION = 604)

 Multi-column UPDATE e.g.

Least Efficient :

UPDATE EMP

SET EMP_CAT = (SELECT MAX(CATEGORY)
 FROM EMP_CATEGORIES),

SAL_RANGE = (SELECT MAX(SAL_RANGE)
 FROM EMP_CATEGORIES)

WHERE EMP_DEPT = 0020;

Most Efficient :

UPDATE EMP
SET (EMP_CAT, SAL_RANGE) =

(SELECT MAX(CATEGORY), MAX(SAL_RANGE)
 FROM EMP_CATEGORIES)

WHERE EMP_DEPT = 0020;

16. Reduce SQL Overheads via “Inline” Stored Functions

SELECT H.EMPNO, E.ENAME,
H.HIST_TYPE, T.TYPE_DESC,
COUNT(*)

FROM HISTORY_TYPE T, EMP E, EMP_HISTORY H
WHERE H.EMPNO = E.EMPNO
AND H.HIST_TYPE = T.HIST_TYPE
GROUP BY H.EMPNO, E.ENAME, H.HIST_TYPE, T.TYPE_DESC;

The above statement's performance may be improved via an inline function

call as shown below:

FUNCTION Lookup_Hist_Type (typ IN number) return varchar2
AS

tdesc varchar2(30);
CURSOR C1 IS

 SELECT TYPE_DESC
 FROM HISTORY_TYPE
 WHERE HIST_TYPE = typ;
BEGIN

OPEN C1;
 FETCH C1 INTO tdesc;
 CLOSE C1;
 return (NVL(tdesc, ’?’));
END;

FUNCTION Lookup_Emp (emp IN number) return varchar2
AS

ename varchar2(30);
 CURSOR C1 IS
 SELECT ENAME
 FROM EMP
 WHERE EMPNO = emp;
BEGIN

OPEN C1;
 FETCH C1 INTO ename;
 CLOSE C1;
 return (NVL(ename, ’?’));

END;

SELECT H.EMPNO, Lookup_Emp(H.EMPNO),
H.HIST_TYPE, Lookup_Hist_Type(H.HIST_TYPE),

 COUNT(*)
FROM EMP_HISTORY H
GROUP BY H.EMPNO, H.HIST_TYPE;

17. Use Table Aliases

Always use table aliases & prefix all column names by their aliases where

there is more than one table involved in a query. This will reduce parse time &
prevent syntax errors from occurring when ambiguously named columns are
added later on.

18. Use EXISTS in Place of IN for Base Tables

Many base table queries have to actually join with another table to satisfy a
selection criteria. In such cases, the EXISTS (or NOT EXISTS) clause is often a
better choice for performance.

For e.g.

Least Efficient :

SELECT *
 FROM EMP (Base Table)
 WHERE EMPNO > 0

AND DEPTNO IN (SELECT DEPTNO
 FROM DEPT
 WHERE LOC = ‘MELB’)

Most Efficient :

SELECT *

 FROM EMP
 WHERE EMPNO > 0

AND EXISTS (SELECT ‘X’
 FROM DEPT
 WHERE DEPTNO = EMP.DEPTNO

 AND LOC = ‘MELB’)

19. Use NOT EXISTS in Place of NOT IN

In sub-query statements such as the following, the NOT IN clause causes an
internal sort/merge. The NOT IN clause is the all-time slowest test, because it
forces a full read of the table in the sub-query SELECT. Avoid using NOT IN
clause either by replacing it with Outer Joins or with NOT EXISTS clause as
shown below:

SELECT . . .
FROM EMP
WHERE DEPT_NO NOT IN (SELECT DEPT_NO

 FROM DEPT
 WHERE DEPT_CAT = ‘A’);

To improve the performance, replace this code with:

Method 1 (Efficient) :

SELECT . . .
FROM EMP A, DEPT B
WHERE A.DEPT_NO = B.DEPT_NO (+)
AND B.DEPT_NO IS NULL
AND B.DEPT_CAT(+) = 'A'

Method 2 (Most Efficient) :

SELECT . . .
FROM EMP E
WHERE NOT EXISTS (SELECT ‘X’
 FROM DEPT
 WHERE DEPT_NO = E.DEPT_NO
 AND DEPT_CAT = ‘A’);

20. Use Joins in Place of EXISTS

In general join tables rather than specifying sub-queries for them such as the
following:

SELECT ENAME
FROM EMP E
WHERE EXISTS (SELECT ‘X’
 FROM DEPT
 WHERE DEPT_NO = E.DEPT_NO
 AND DEPT_CAT = ‘A’);

To improve the performance, specify:

SELECT ENAME
FROM DEPT D, EMP E
WHERE E.DEPT_NO = D.DEPT_NO
AND D.DEPT_CAT = ‘A’;

21. Use EXISTS in Place of DISTINCT

Avoid joins that require the DISTINCT qualifier on the SELECT list when you
submit queries used to determine information at the owner end of a one-to-many
relationship (e.g. departments that have many employees).

For e.g.

Least Efficient :

SELECT DISTINCT DEPT_NO, DEPT_NAME
FROM DEPT D, EMP E

WHERE D.DEPT_NO = E.DEPT_NO

Most Efficient :

SELECT DEPT_NO, DEPT_NAME
FROM DEPT D
WHERE EXISTS (SELECT ‘X’
 FROM EMP E
 WHERE E.DEPT_NO = D.DEPT_NO);

EXISTS is a faster alternative because the RDBMS kernel realizes that when

the sub-query has been satisfied once, the query can be terminated.

22. Identify "Poorly Performing" SQL statements

Use the following queries to identify the poorly performing SQL statements.

SELECT EXECUTIONS, DISK_READS, BUFFER_GETS,

 ROUND((BUFFER_GETS-DISK_READS)/BUFFER_GETS,2) Hit_Ratio,
 ROUND(DISK_READS/EXECUTIONS,2) Reads_Per_Run,
 SQL_TEXT

FROM V$SQLAREA
WHERE EXECUTIONS > 0
AND BUFFER_GETS > 0
AND (BUFFER_GETS - DISK_READS) / BUFFER_GETS < 0.80
ORDER BY 4 DESC;

23. Use TKPROF Utility to View Performance Statistics

The SQL trace facility writes a trace file containing performance statistics for
the SQL statements being executed. The trace file provides valuable information
such as the number of parses, executes and fetches performed, various types of
CPU & elapsed times, the number of physical & logical reads, etc, that you can
use to tune your system.

To enable SQL trace, use the following query:

ALTER SESSION SET SQL_TRACE TRUE

To globally enable SQL trace, you must set SQL_TRACE parameter to TRUE in

init.ora. USER_DUMP_DEST parameter specifies the directory where SQL trace
writes the trace file.

24. Use EXPLAIN PLAN To Analyze SQL Statements

Explain Plan is an Oracle function that analyzes SQL statements for
performance without running the queries first. The results of the Explain Plan tell
you the order that Oracle will search/join the tables, the types of access that will
be employed (indexed search or full table scan), and the names of indexes that
will be used.

You should read the list of operations from the inside out and from top to

bottom. Thus, if two operations are listed, the one that is the most indented will

usually be executed first. If the two operations are at the same level of
indentation, then the one that is listed first (with the lowest operation number)
will be executed first.

NESTED LOOPS joins are among the few execution paths that do not follow

the “read from the inside out” rule of indented execution paths. To read the
NESTED LOOPS execution path correctly, examine the order of the operations
that directly provide data to the NESTED LOOPS operation. Of those operations,
the operation with the lowest number is executed first.

25. Use Indexes to Improve Performance

An index is a conceptual part of a database table that may be used to speed

up the retrieval of data from that table. Internally, ORACLE uses a sophisticated
self-balancing B-tree index structure.

Indexed retrieval of data from a database is almost always faster than a full-
table scan. The ORACLE optimizer uses the indexes defined for a table when it
figures out the most efficient retrieval path for a query or update statement.
ORACLE also uses indexes in performing more efficient joins of multiple tables.
Another benefit of indexes is that they provide a way to guarantee the
uniqueness of the primary key in a table.

You can index any column in a table except those defined with data types of

LONG or LONG RAW. In general, indexes are most useful when they are
specified on large tables. If small tables are frequently joined, however, you’ll
find that performance improves when you index these tables too.

Although indexes usually provide performance gains, there is a cost to using

them. Indexes require storage space. They also require maintenance. Every time
a record is added to or deleted from a table and every time an indexed column is
modified, the index(es) itself must be updated as well. This can mean 4 or 5
extra disk I/Os per INSERT, DELETE or UPDATE for a record. Because indexes
incur the overhead of data storage & processing, you can actually degrade
response time if you specify indexes that you don’t use.

The maximum number of indexes is usually between 4 & 6 per table. Do keep

the number of indexes over a single table to a minimum, but if an index is useful
and response times can be kept below the agreed-upon limit for your site, then
don’t hesitate to create the index.

26. Operations That Use Indexes

ORACLE performs two operations for accessing the indexes.

� INDEX UNIQUE SCAN

In most cases, the optimizer uses index via the where clause f
the query.

 For e.g.

 Consider a table LODGING having two indexes on it: a
unique index LODGING_PK on the Lodging column & a non-unique
index LODGING$MANAGER on the Manager column.

 SELECT *
 FROM LODGING
 WHERE LODGING = ‘ROSE HILL’;

 Internally, the execution of the above query will be divided into
two steps. First, the LODGING_PK index will be accessed via an
INDEX UNIQUE SCAN operation. The RowID value that matches the
‘Rose Hill’ Lodging value will be returned from the index; that RowID
value will then be used to query LODGING via a TABLE ACCESS BY
ROWID operation.

 If the value requested by the query had been contained within
the index, then ORACLE would not have been needed to use the TABLE
ACCESS BY ROWID operation; since the data would be in the index,
the index would be all that was needed to satisfy the query. Because
the query selected all columns from the LODGING table, and the index
did not contain all of the columns of the LODGING table, the TABLE
ACCESS BY ROWID operation was necessary.

 The query shown below would require only INDEX UNIQUE
SCAN operation.

 SELECT LODGING
 FROM LODGING
 WHERE LODGING = ‘ROSE HILL’;

� INDEX RANGE SCAN

If you query the database based on a range of values, or if
you query using a non-unique index, then an INDEX RANGE SCAN
operation is used to query the index.

 Example 1:

 SELECT LODGING
 FROM LODGING
 WHERE LODGING LIKE ‘M%’

Since the where clause contains a range of values, the unique
LODGING_PK index will be accessed via an INDEX RANGE SCAN
operation. Because INDEX RANGE SCAN operations require reading
multiple values from the index, they are less efficient than INDEX
UNIQUE SCAN operations. Here, INDEX RANGE SCAN of LODGING_PK
is the only operation required to resolve the query as only the
LODGING column was selected by the query whose values are stored
in the LODGING_PK index which is being scanned.

Example 2:

 SELECT LODGING
 FROM LODGING
 WHERE MANAGER = ‘BILL GATES’;

The above query will involve two operations: an INDEX
RANGE SCAN of LODGING$MANAGER (to get the RowID values for
all of the rows with ‘BILL GATES’ values in the MANAGER column),
followed by a TABLE ACCESS BY ROWID of the LODGING table (to
retrieve the LODGING column values). Since the LODGING$MANAGER
index is a non-unique index, the database cannot perform an INDEX
UNIQUE SCAN on LODGING$MANAGER, even if MANAGER is equated
to a single value in the query.

Since the query selects the LODGING column & the LODGING

column is not in the LODGING$MANAGER index, the INDEX RANGE
SCAN must be followed by a TABLE ACCESS BY ROWID operation.

When specifying a range of values for a column, an index will

not be used if the first character specified is a wildcard. The
following query will not use the LODGING$MANAGER index:

SELECT LODGING
FROM LODGING
WHERE MANAER LIKE ‘%HANMAN’;

Here, a full table scan (TABLE ACCESS FULL operation) will be

performed.

27. Selection of Driving Table

The Driving Table is the table that will be read first (usually via a TABLE
ACCESS FULL operation). The method of selection for the driving table depends
on the optimizer in use.

If you are using the CBO, then the optimizer will check the statistics for the

size of the tables & the selectivity of the indexes & will choose the path with the
lowest overall cost.

If you are using the RBO, and indexes are available for all join conditions,

then the driving table will usually be the table that is listed last in the FROM
clause.

 For e.g.

 SELECT A.NAME, B.MANAGER
 FROM WORKER A,

LODGING B
 WHERE A.LODGING = B.LODGING;

 Since an index is available on the LODGING column of the LODGING
table, and no comparable index is available on the WORKER table, the
WORKER table will be used as the driving table for the query.

28. Two or More Equality Indexes

When a SQL statement has two or more equality indexes over different tables
(e.g. WHERE = value) available to the execution plan, ORACLE uses both indexes
by merging them at run time & fetching only rows that are common to both
indexes.

The index having a UNIQUE clause in its CREATE INDEX statement ranks

before the index that does not have a UNIQUE clause. However, this is true only
when they are compared against constant predicates. If they are compared
against other indexed columns from other tables, such clauses are much lower on
the optimizer’s list.

If the two equal indexes are over two different tables, table sequence

determines which will be queried first; the table specified last in the FROM clause
outranks those specified earlier.

If the two equal indexes are over the same table, the index referenced first

in the WHERE clause ranks before the index referenced second.

For e.g.

There is a non-unique index over DEPTNO & a non-unique index over

EMP_CAT:

SELECT ENAME
FROM EMP
WHERE DEPTNO = 20
AND EMP_CAT = ‘A’;

Here, the DEPTNO index is retrieved first, followed by (merged with) the

EMP_CAT indexed rows. The Explain Plan is as shown below:

TABLE ACCESS BY ROWID ON EMP
 AND-EQUAL
 INDEX RANGE SCAN ON DEPT_IDX
 INDEX RANGE SCAN ON CAT_IDX

29. Equality & Range Predicates

When indexes combine both equality & range predicates over the same table,
ORACLE cannot merge these indexes. It uses only the equality predicate.

For e.g.

There is a non-unique index over DEPTNO & a non-unique index over

EMP_CAT:

SELECT ENAME
FROM EMP
WHERE DEPTNO > 20
AND EMP_CAT = ‘A’;

Here, only the EMP_CAT index is utilized & then each row is validated
manually. The Explain Plan is as shown below:

TABLE ACCESS BY ROWID ON EMP

INDEX RANGE SCAN ON CAT_IDX

30. No Clear Ranking Winner

When there is no clear index “ranking” winner, ORACLE will use only one of
the indexes. In such cases, ORACLE uses the first index referenced by a WHERE
clause in the statement.

For e.g.

There is a non-unique index over DEPTNO & a non-unique index over

EMP_CAT:

SELECT ENAME
FROM EMP
WHERE DEPTNO > 20
AND EMP_CAT > ‘A’;

Here, only the DEPT_NO index is utilized & then each row is validated

manually. The Explain Plan is as shown below:

TABLE ACCESS BY ROWID ON EMP
 INDEX RANGE SCAN ON DEPT_IDX

31. Explicitly Disabling an Index

If two or more indexes have equal ranking, you can force a particular index
(that has the least number of rows satisfying the query) to be used.
Concatenating || ‘’ to character column or + 0 to numeric column suppresses the
use of the index on that column.

For e.g.

SELECT ENAME
FROM EMP
WHERE EMPNO = 7935
AND DEPTNO + 0 = 10
AND EMP_TYPE || ‘’ = ‘A’;

This is a rather dire approach to improving performance because disabling the

WHERE clause means not only disabling current retrieval paths, but also disabling
all future paths. You should resort to this strategy only if you need to tune a few
particular SQL statements individually.

Here is an example of when this strategy is justified. Suppose you have a

non-unique index over the EMP_TYPE column of the EMP table, and that the
EMP_CLASS column is not indexed:

SELECT ENAME

FROM EMP
WHERE EMP_TYPE = ‘A’
AND EMP_CLASS = ‘X’;

The optimizer notices that EMP_TYPE is indexed & uses that path; it is the

only choice at this point. If, at a later time, a second, non-unique index is added
over EMP_CLASS, the optimizer will have to choose a selection path. Under
normal circumstances, the optimizer would simply use both paths, performing a
sort/merge on the resulting data. However, if one particular path is nearly unique
(perhaps it returns only 4 or 5 rows) & the other path has thousands of
duplicates, then the sort/merge operation is an unnecessary overhead. In this
case, you will want to remove the EMP_CLASS index from optimizer
consideration. You can do this by recording the SELECT statement as follows:

SELECT ENAME
FROM EMP
WHERE EMP_TYPE = ‘A’
AND EMP_CLASS || ‘’ = ‘X’;

32. Avoid Calculations on Indexed Columns

If the indexed column is a part of a function (in the WHERE clause), the
optimizer does not use an index & will perform a full-table scan instead.

Note :
 The SQL functions MIN & MAX are exceptions to this rule & will

utilize all available indexes.

For e.g.

Least Efficient :

SELECT . . .
FROM DEPT
WHERE SAL * 12 > 25000;

Most Efficient :

SELECT . . .
FROM DEPT
WHERE SAL > 25000 / 12;

33. Automatically Suppressing Indexes

If a table has two (or more) available indexes, and that one index is unique &
the other index is not unique, in such cases, ORACLE uses the unique retrieval
path & completely ignores the second option.

For e.g.

SELECT ENAME
FROM EMP
WHERE EMPNO = 2362

AND DEPTNO = 20;

Here, there is a unique index over EMPNO & a non-unique index over DEPTNO

The EMPNO index is used to fetch the row. The second predicate (DEPTNO = 20)
is then evaluated (no index used). The Explain Plan is as shown below:

TABLE ACCESS BY ROWID ON EMP
 INDEX UNIQUE SCAN ON EMP_NO_IDX

34. Avoid NOT on Indexed Columns

In general, avoid using NOT when testing indexed columns. The NOT function
has the same effect on indexed columns that functions do. When ORACLE
encounters a NOT, it will choose not to use the index & will perform a full-table
scan instead.

For e.g.

Least Efficient : (Here, index will not be used)

SELECT . . .
FROM DEPT
WHERE DEPT_CODE NOT = 0;

Most Efficient : (Here, index will be used)

SELECT . . .
FROM DEPT
WHERE DEPT_CODE > 0;

In a few cases, the ORACLE optimizer will automatically transform NOTs

(when they are specified with other operators) to the corresponding functions:

NOT > to <=
NOT >= to <
NOT < to >=
NOT <= to >

35. Use >= instead of >

If there is an index on DEPTNO, then try

SELECT *
FROM EMP
WHERE DEPTNO >= 4

Instead of

SELECT *
FROM EMP
WHERE DEPTNO > 3

Because instead of looking in the index for the first row with column = 3 and
then scanning forward for the first value that is > 3, the DBMS may jump directly
to the first entry that is = 4.

36. Use UNION in Place of OR (in case of Indexed Columns)

In general, always use UNION instead of OR in WHERE clause. Using OR on
an indexed column causes the optimizer to perform a full-table scan rather than
an indexed retrieval. Note, however, that choosing UNION over OR will be
effective only if both columns are indexed; if either column is not indexed, you
may actually increase overheads by not choosing OR.

In the following example, both LOC_ID & REGION are indexed.

Specify the following:

SELECT LOC_ID, LOC_DESC, REGION
FROM LOCATION
WHERE LOC_ID = 10
UNION
SELECT LOC_ID, LOC_DESC, REGION
FROM LOCATION
WHERE REGION = ‘MELBOURNE’

instead of

SELECT LOC_ID, LOC_DESC, REGION
FROM LOCATION
WHERE LOC_ID = 10
OR REGION = ‘MELBOURNE’

If you do use OR, be sure that you put the most specific index first in the OR’s

predicate list, and put the index that passes the most records last in the list.

Note that the following:

WHERE KEY1 = 10 Should return least rows
OR KEY2 = 20 Should return most rows

is internally translated to:

WHERE KEY1 = 10
AND (KEY1 NOT = 10 AND KEY2 = 20)

37. Use IN in Place of OR

The following query can be replaced to improve the performance as shown
below:

 Least Efficient :

SELECT . . .
FROM LOCATION

WHERE LOC_ID = 10
OR LOC_ID = 20
OR LOC_ID = 30

 Most Efficient :

SELECT . . .
FROM LOCATION
WHERE LOC_IN IN (10,20,30)

38. Avoid IS NULL & IS NOT NULL on Indexed Columns

Avoid using any column that contains a null as a part of an index. ORACLE
can never use an index to locate rows via a predicate such as IS NULL or IS NOT
NULL.

In a single-column index, if the column is null, there is no entry within the

index. For concatenated index, if every part of the key is null, no index entry
exists. If at least one column of a concatenated index is non-null, an index entry
does exist.

For e.g.

If a UNIQUE index is created over a table for columns A & B and a key value

of (123, null) already exists, the system will reject the next record with that key
as a duplicate. However, if all of the indexed columns are null (e.g. null, null), the
keys are not considered to be the same, because in this case ORACLE considers
the whole key to be null & null can never equal null. You could end up with 1000
rows all with the same key, a value of null !

Because null values are not a part of an index domain, specifying null on an

indexed column will cause that index to be omitted from the execution plan.

For e.g.

Least Efficient : (Here, index will not be used)

SELECT . . .
FROM DEPARTMENT
WHERE DEPT_CODE IS NOT NULL;

Most Efficient : (Here, index will be used)

SELECT . . .
FROM DEPARTMENT
WHERE DEPT_CODE >= 0;

39. Always Use Leading Column of a Multicolumn Index

If the index is created on multiple columns, then the index will only be used if
the leading column of the index is used in a limiting condition (where clause) of
the query. If your query specifies values for only the non-leading columns of the
index, then the index will not be used to resolve the query.

40. Oracle Internal Operations

ORACLE performs internal operations when executing the query. The following
table shows some of the important operations that ORACLE performs, while
executing the query.

Oracle Clause Oracle Internal Operations

performed

ORDER BY SORT ORDER BY
UNION UNION-ALL
MINUS MINUS

INTERSECT INTERSECTION
DISTINCT, MINUS, INTERSECT, UNION SORT UNIQUE

MIN, MAX, COUNT SORT AGGREGATE
GROUP BY SORT GROUP BY
ROWNUM COUNT or COUNT STOPKEY

Queries involving Joins SORT JOIN, MERGE JOIN, NESTED
LOOPS

CONNECT BY CONNECT BY

41. Use UNION-ALL in Place of UNION (Where Possible)

When the query performs a UNION of the results of two queries, the two
result sets are merged via UNION-ALL operation & then the result set is
processed by a SORT UNIQUE operation before the records are returned to the
user.

If the query had used a UNION-ALL function in place of UNION, then the

SORT UNIQUE operation would not have been necessary, thus improving the
performance of the query.

 For e.g.

Least Efficient :

SELECT ACCT_NUM, BALANCE_AMT
FROM DEBIT_TRANSACTIONS
WHERE TRAN_DATE = ‘31-DEC-95’
UNION
SELECT ACCT_NUM, BALANCE_AMT
FROM CREDIT_TRANSACTIONS
WHERE TRAN_DATE = ‘31-DEC-95’

Most Efficient :

SELECT ACCT_NUM, BALANCE_AMT
FROM DEBIT_TRANSACTIONS
WHERE TRAN_DATE = ‘31-DEC-95’
UNION ALL

SELECT ACCT_NUM, BALANCE_AMT
FROM CREDIT_TRANSACTIONS
WHERE TRAN_DATE = ‘31-DEC-95’

42. Using Hints

For table accesses, there are 2 relevant hints:

FULL & ROWID

The FULL hint tells ORACLE to perform a full table scan on the listed table.

 For e.g.

 SELECT /*+ FULL(EMP) */ *
 FROM EMP
 WHERE EMPNO = 7839;

 The ROWID hint tells the optimizer to use a TABLE ACCESS BY ROWID
operation to access the rows in the table.

 In general, you should use a TABLE ACCESS BY ROWID operation
whenever you need to return rows quickly to users and whenever the tables
are large. To use the TABLE ACCESS BY ROWID operation, you need to either
know the ROWID values or use an index.

 If a large table has not been marked as a cached table & you wish
for its data to stay in the SGA after the query completes, you can use the
CACHE hint to tell the optimizer to keep the data in the SGA for as long as
possible. The CACHE hint is usually used in conjunction with the FULL hint.

 For e.g.

 SELECT /*+ FULL(WORKER) CACHE(WORKER) */ *
 FROM WORKER;

 The INDEX hint tells the optimizer to use an index-based scan on the
specified table. You do not need to mention the index name when using the
INDEX hint, although you can list specific indexes if you choose.

 For e.g.

 SELECT /* + INDEX(LODGING) */ LODGING
 FROM LODGING
 WHERE MANAGER = 'BILL GATES';

 The above query should use the index without the hint being needed.
However, if the index is non-selective & you are using the CBO, then the
optimizer may choose to ignore the index during the processing. In that case,
you can use the INDEX hint to force an index-based data access path to be
used.

 There are several hints available in ORACLE such as ALL_ROWS,

FIRST_ROWS, RULE, USE_NL, USE_MERGE, USE_HASH, etc for tuning the
queries.

43. Use WHERE Instead of ORDER BY Clause

ORDER BY clauses use an index only if they meet 2 rigid requirements.

� All of the columns that make up the ORDER BY clause must be contained

within a single index in the same sequence.

� All of the columns that make up the ORDER BY clause must be defined as

NOT NULL within the table definition. Remember, null values are not
contained within an index.

WHERE clause indexes & ORDER BY indexes cannot be used in parallel.

For e.g.

 Consider a table DEPT with the following fields:

DEPT_CODE PK NOT NULL
DEPT_DESC NOT NULL
DEPT_TYPE NULL

NON UNIQUE INDEX (DEPT_TYPE)

Least Efficient : (Here, index will not be used)

 SELECT DEPT_CODE
 FROM DEPT
 ORDER BY DEPT_TYPE

 Explain Plan:

 SORT ORDER BY
 TABLE ACCESS FULL

Most Efficient : (Here, index will be used)

 SELECT DEPT_CODE
 FROM DEPT
 WHERE DEPT_TYPE > 0

 Explain Plan:

 TABLE ACCESS BY ROWID ON EMP
 INDEX RANGE SCAN ON DEPT_IDX

44. Avoid Converting Index Column Types

ORACLE automatically performs simple column type conversion or casting,
when it compares two columns of different types.

Assume that EMPNO is an indexed numeric column.

SELECT . . .
FROM EMP
WHERE EMPNO = ‘123’

In fact, because of conversion, this statement will actually be processed as:

SELECT . . .
FROM EMP
WHERE EMPNO = TO_NUMBER(‘123’)

Here, even though a type conversion has taken place, index usage is not

affected.

Now assume that EMP_TYPE is an indexed CHAR column.

SELECT . . .
FROM EMP
WHERE EMP_TYPE = 123

This statement will actually be processed as:

SELECT . . .
FROM EMP
WHERE TO_NUMBER(EMP_TYPE) = 123

Indexes cannot be used, if they are included in a function. Therefore, this

internal conversion will keep the index from being used.

45. Beware of the WHEREs

Some SELECT statement WHERE clauses do not use indexes at all. Here, are
some of the examples shown below:

In the following example, the != function cannot use an index.

Remember, indexes can tell you what is in a table, but not what is not in a table.
All references to NOT, != and <> disable index usage:

Do Not Use:

SELECT ACCOUNT_NAME
FROM TRANSACTION
WHERE AMOUNT != 0;

Use:

SELECT ACCOUNT_NAME
FROM TRANSACTION
WHERE AMOUNT > 0;

In the following example, || is the concatenate function. It, like other

functions, disables indexes.

Do Not Use:

SELECT ACCOUNT_NAME, AMOUNT
FROM TRANSACTION
WHERE ACCOUNT_NAME || ACCOUNT_TYPE = ‘AMEXA’;

Use:

SELECT ACCOUNT_NAME, AMOUNT
FROM TRANSACTION
WHERE ACCOUNT_NAME = ‘AMEX’
AND ACCOUNT_TYPE = ‘A’;

In the following example, addition (+) is a function and disables the index.

The other arithmetic operators (-, *, and /) have the same effect.

Do Not Use:

SELECT ACCOUNT_NAME, AMOUNT
FROM TRANSACTION
WHERE AMOUNT+3000 < 5000;

Use:

SELECT ACCOUNT_NAME, AMOUNT
FROM TRANSACTION
WHERE AMOUNT < 2000;

In the following example, indexes cannot be used to compare indexed

columns against the same index column. This causes a full-table scan.

Do Not Use:

SELECT ACCOUNT_NAME, AMOUNT
FROM TRANSACTION
WHERE ACCOUNT_NAME = NVL(:ACC_NAME, ACCOUNT_NAME);

Use:

SELECT ACCOUNT_NAME, AMOUNT
FROM TRANSACTION
WHERE ACCOUNT_NAME LIKE NVL(:ACC_NAME, ‘%’);

46. CONCATENATION of Multiple Scans

If you specify a list of values for a column’s limiting condition, then the
optimizer may perform multiple scans & concatenate the results of the scans.

For e.g.

 SELECT *
 FROM LODGING

 WHERE MANAGER IN (‘BILL GATES’, ‘KEN MULLER’);

 The optimizer may interpret the query as if you had provided two
separate limiting conditions, with an OR clause as shown below:

 SELECT *
 FROM LODGING
 WHERE MANAGER = ‘BILL GATES’

OR MANAGER = ‘KEN MULLER’;

When resolving the above query, the optimizer may perform an INDEX
RANGE SCAN on LODGING$MANAGER for each of the limiting conditions. The
RowIDs returned from the index scans are used to access the rows in the
LODGING table (via TABLE ACCESS BY ROWID operations). The rows
returned from each of the TABLE ACCESS BY ROWID operations are combined
into a single set of rows via the CONCATENATION operation.

The Explain Plan is as shown below:

SELECT STATEMENT Optimizer=CHOOSE

CONCATENATION
TABLE ACCESS (BY INDEX ROWID) OF LODGING

INDEX (RANGE SCAN) OF LODGING$MANAGER (NON-UNIQUE)
TABLE ACCESS (BY INDEX ROWID) OF LODGING

INDEX (RANGE SCAN) OF LODGING$MANAGER (NON-UNIQUE)

47. Use the Selective Index (Only For CBO)

The Cost-Based Optimizer can use the selectivity of the index to judge
whether using the index will lower the cost of executing the query.

If the index is highly selective, then a small number of records are associated

with each distinct column value.

For example, if there are 100 records in a table & 80 distinct values for a

column in that table, then the selectivity of an index on that column is 80/100 =
0.80 The higher the selectivity, the fewer the number of rows returned for each
distinct value in the column.

If an index has a low selectivity, then the many INDEX RANGE SCAN

operations & TABLE ACCESS BY ROWID operations used to retrieve the data may
involve more work than a TABLE ACCESS FULL of the table.

48. Avoid Resource Intensive Operations

Queries which uses DISTINCT, UNION, MINUS, INTERESECT, ORDER BY and
GROUP BY call upon SQL engine to perform resource intensive sorts. A DISTINCT
requires one sort, the other set operators requires at least two sorts.

For example, a UNION of queries in which each query contains a group by

clause will require nested sorts; a sorting operation would be required for each of
the queries, followed by the SORT UNIQUE operation required for the UNION.
The sort operation required for the UNION will not be able to begin until the

sorts for the group by clauses have completed. The more deeply nested the
sorts are, the greater the performance impact on your queries.

Other ways of writing these queries should be found. Most queries that use

the set operators, UNION, MINUS and INTERSECT, can be rewritten in other
ways.

49. GROUP BY & Predicate Clauses

The performance of GROUP BY queries can be improved by eliminating
unwanted rows early in the selection process. The following two queries return
the same data, however, the second is potentially quicker, since rows will be
eliminated before the set operators are applied.

For e.g.

Least Efficient :

SELECT JOB, AVG(SAL)
FROM EMP

 GROUP BY JOB
 HAVING JOB = ‘PREDIDENT’
 OR JOB = ‘MANAGER’

Most Efficient :

SELECT JOB, AVG(SAL)
FROM EMP
WHERE JOB = ‘PREDIDENT’
OR JOB = ‘MANAGER’
GROUP BY JOB

50. Using Dates

When using dates, note that, if more than 5 decimal places are added to a
date, the date is actually rounded up to the next day !

For e.g.

SELECT TO_DATE(’01-JAN-93’) + .99999
FROM DUAL;

returns:

’01-JAN-93 23:59:59’

And,

SELECT TO_DATE(’01-JAN-93’) + .999999
FROM DUAL;

returns:

‘02-JAN-93 00:00:00’

51. Use Explicit Cursors

When implicit cursors are used, two calls are made to the database, once to
fetch the record and then to check for the TOO MANY ROWS exception. Explicit
cursors prevent the second call.

52. Tuning EXPort & IMPort

Run Export & Import with a large buffer size, say 10 MB (10,240,000) to
speed up the process. Oracle will acquire as much as you specify and will not
return an error if it can 't find that amount. Set this value to at least as large as
the largest table column value, otherwise the field will be truncated.

53. Table and Index Splitting

Always create separate tablespaces for your tables & indexes and never put
objects that are not part of the core Oracle system in the system tablespace. Also
ensure that data tablespaces & index tablespaces reside on separate disk drives.

The reason is to allow the disk head on one disk to read the index information

while the disk head on the other disk reads the table data. Both reads happen
faster because one disk head is on the index and the other is on the table data. If
the objects were on the same disk, the disk head would need to reposition itself
from the index extent to the data extent between the index read and the data
read. This can dramatically decrease the throughput of data in a system.

54. CPU Tuning

Allocate as much real memory as possible to the shared pool & database
buffers (SHARED_POOL_SIZE & DB_BLOCK_BUFFERS in init.ora) to permit as
much work as possible to be done in memory. Work done in memory rather than
disk does not use as much CPU.

Set the SEQUENCE_CACHE_ENTRIES in init.ora high. (Default is 10 - try

setting it to 1000).

Allocate more than the default amount of memory to do sorting

(SORT_AREA_SIZE); memory sorts not requiring I/O use much less CPU.

On multi-CPU machines, increase the LOG_SIMULTANEOUS_COPIES to allow

one process per CPU to copy entries into the redo log buffers.

55. Use UTLBstat & UTLEstat to Analyze Database Performance

Oracle supplies two scripts UTLBstat.sql & UTLEstat.sql to gather a snapshot
of ORACLE performance over a given period of time.

UTLBstat gathers the initial performance statistics. It should not be run

immediately after the database has started or it will skew your results as none of
the system caches are loaded initially.

UTLEstat gathers performance statistics at the end of your observations
period. This script must be run at the end of the period for which you want to
tune performance. It then generates a report of the complete information.

In order that all the statistics to be populated during a UTLBstat/UTLEstat

session, you must set TIMED_STATISTICS=TRUE in init.ora

You must run UTLBstat from sqldba, because it does a connect internal to

start the collection of statistics.

 Sqldba> @utlbstat.sql

The output from UTLBstat/UTLEstat is placed in report.txt

56. Interpreting the Output (report.txt) from UTLBstat/UTLEstat

� Library Cache

This cache contains parsed & executable SQL statements. An

important key to tuning the SGA is ensuring that the library cache is large
enough so Oracle can keep parsed & executable statements in the shared
pool.

RELOAD represents entries in the library cache that were parsed more

than once. You should strive for zero RELOADs. The solution is to increase
SHARED_POOL_SIZE parameter. Alternatively, you can calculate this ratio by
using the following query.

SELECT SUM(pins), SUM(reloads),

SUM(reloads) / (SUM(pins)+SUM(reloads)) * 100
FROM V$LIBRARYCACHE

If the ratio is above 1%, increase the SHARED_POOL_SIZE in init.ora

 GETHITRATIO & PINHITRATIO should always be greater than 80%. If
you fall below this mark, you should increase the value of
SHARED_POOL_SIZE.

� Hit Ratio

Determine the Hit Ratio using the following formulae:

Logical Reads = Consistent Gets + DB Block Gets
Hit Ratio = (Logical Reads - Physical Reads) / Logical Reads

Hit Ratio should be greater than 80%. If the Hit Ratio is less than
80%, increase the value of DB_BLOCK_BUFFERS (data cache). The larger the
data cache, the more likely the Oracle database will have what it needs in
memory. The smaller the cache, the more likely Oracle will have to issue I/Os
to put the information in the cache.

� Buffer Busy Wait Ratio

The goal is to eliminate all waits for resources. Determine the ratio
using the following formulae.

Logical Reads = Consistent Gets + DB Block Gets
Buffer Busy Wait Ratio = Buffer Busy Waits / Logical Reads

A ratio of greater than 4% is a problem.

� Sorts

The sorts (disk) row tells you how many times you had to sort to disk;

that is a sort that could not be handled by the size you specified for
SORT_AREA_SIZE parameter.

The sorts (memory) row tells you how many times you were able to

complete the sort using just memory. Usually, 90% or higher of all sorting
should be done in memory.

To eliminate sorts to disk, increase SORT_AREA_SIZE parameter. The

larger you make SORT_AREA_SIZE, the larger the sort that can be
accomplished by Oracle in memory. Unlike other parameters, this is allocated
per user. This is taken from available memory, not from the Oracle SGA area
of memory.

� Chained Blocks

Eliminate Chained Block. If you suspect chaining in your database & it
is small enough, export and import the entire database. This will repack the
database, eliminating any chained blocks.

� Dictionary Cache

Dictionary Cache contains data dictionary information pertaining to
segments in the database (e.g. indexes, sequences, and tables) file space
availability (for acquisition of space by object creation & extension) and object
privileges.

A well-tuned database should report an average dictionary cache hit

ratio of over 90% by using following query:

SELECT (1- (sum(getmisses) /

(SUM(gets)+SUM(getmisses))))*100 "Hit Ratio"
FROM V$ROWCACHE

� Database Buffer Cache

A Cache Hit means the information required is already in memory.
A Cache Miss means Oracle must perform disk I/O to satisfy a request.

The secret when sizing the database buffer cache is to keep the cache

misses to a minimum.

	Share SQL Statements
	Select the Most Efficient Table Name Sequence (Only for RBO)
	
	FROM	EMP
	FROM	EMP

